276°
Posted 20 hours ago

Sntieecr 6 Set 131 PCS DC Motors Kit, Science Experiment Kit Mini Electric Motor 1.5-3V 15000RPM with 66 PCS Bulbs, Buzzer Sounder, Shaft Propeller, Instruction, for Kid DIY STEM Engineering Project

£11.495£22.99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

In certain smaller single-phase motors, starting is done by means of a copper wire turn around part of a pole; such a pole is referred to as a shaded pole. The current induced in this turn lags behind the supply current, creating a delayed magnetic field around the shaded part of the pole face. This imparts sufficient rotational field energy to start the motor. These motors are typically used in applications such as desk fans and record players, as the required starting torque is low, and the low efficiency is tolerable relative to the reduced cost of the motor and starting method compared to other AC motor designs. Larger single phase motors are split-phase motors and have a second stator winding fed with out-of-phase current; such currents may be created by feeding the winding through a capacitor or having it receive different values of inductance and resistance from the main winding. In capacitor-start designs, the second winding is disconnected once the motor is up to speed, usually either by a centrifugal switch acting on weights on the motor shaft or a thermistor which heats up and increases its resistance, reducing the current through the second winding to an insignificant level. The capacitor-run designs keep the second winding on when running, improving torque. A resistance start design uses a starter inserted in series with the startup winding, creating reactance. Although polyphase motors are inherently self-starting, their starting and pull-up torque design limits must be high enough to overcome actual load conditions.

An AC motor's synchronous speed, f s {\displaystyle f_{s}} , is the rotation rate of the stator's magnetic field, Rotor resistance, leakage reactance, and slip ( R r {\displaystyle R_{r}} , X r {\displaystyle X_{r}} or R r ′ {\displaystyle R_{r}'} , X r ′ {\displaystyle X_{r}'} , and s {\displaystyle s} ). Many useful motor relationships between time, current, voltage, speed, power factor, and torque can be obtained from analysis of the Steinmetz equivalent circuit (also termed T-equivalent circuit or IEEE recommended equivalent circuit), a mathematical model used to describe how an induction motor's electrical input is transformed into useful mechanical energy output. The equivalent circuit is a single-phase representation of a multiphase induction motor that is valid in steady-state balanced-load conditions. Paraphrasing from Alger in Knowlton, an induction motor is simply an electrical transformer the magnetic circuit of which is separated by an air gap between the stator winding and the moving rotor winding. [28] The equivalent circuit can accordingly be shown either with equivalent circuit components of respective windings separated by an ideal transformer or with rotor components referred to the stator side as shown in the following circuit and associated equation and parameter definition tables. [39] [46] [51] [52] [53] [54] Steinmetz equivalent circuit The typical speed-torque relationship of a standard NEMA Design B polyphase induction motor is as shown in the curve at right. Suitable for most low performance loads such as centrifugal pumps and fans, Design B motors are constrained by the following typical torque ranges: [30] [b]Self-starting polyphase induction motors produce torque even at standstill. Available squirrel-cage induction motor starting methods include direct-on-line starting, reduced-voltage reactor or auto-transformer starting, star-delta starting or, increasingly, new solid-state soft assemblies and, of course, variable frequency drives (VFDs). [39] Breakdown torque T max {\displaystyle T_{\text{max}}} happens when s ≈ R r ′ / X {\displaystyle s\approx R_{\text{r}}'/X} and I s ≈ 0.7 L R C {\displaystyle I_{\text{s}}\approx 0.7\;LRC} such that T max ≈ K V s 2 / 2 X {\displaystyle T_{\text{max}}\approx KV_{\text{s}} Before the development of semiconductor power electronics, it was difficult to vary the frequency, and cage induction motors were mainly used in fixed speed applications. Applications such as electric overhead cranes used DC drives or wound rotor motors (WRIM) with slip rings for rotor circuit connection to variable external resistance allowing considerable range of speed control. However, resistor losses associated with low speed operation of WRIMs is a major cost disadvantage, especially for constant loads. [40] Large slip ring motor drives, termed slip energy recovery systems, some still in use, recover energy from the rotor circuit, rectify it, and return it to the power system using a VFD. Over a motor's normal load range, the torque's slope is approximately linear or proportional to slip because the value of rotor resistance divided by slip, R r ′ / s {\displaystyle R_{r}'/s} , dominates torque in a linear manner. [38] As load increases above rated load, stator and rotor leakage reactance factors gradually become more significant in relation to R r ′ / s {\displaystyle R_{r}'/s} such that torque gradually curves towards breakdown torque. As the load torque increases beyond breakdown torque the motor stalls. In two-pole single-phase motors, the torque goes to zero at 100% slip (zero speed), so these require alterations to the stator such as shaded-poles to provide starting torque. A single phase induction motor requires separate starting circuitry to provide a rotating field to the motor. The normal running windings within such a single-phase motor can cause the rotor to turn in either direction, so the starting circuit determines the operating direction.

The power factor of induction motors varies with load, typically from about 0.85 or 0.90 at full load to as low as about 0.20 at no-load, [39] due to stator and rotor leakage and magnetizing reactances. [45] Power factor can be improved by connecting capacitors either on an individual motor basis or, by preference, on a common bus covering several motors. For economic and other considerations, power systems are rarely power factor corrected to unity power factor. [46]

In both induction and synchronous motors, the AC power supplied to the motor's stator creates a magnetic field that rotates in synchronism with the AC oscillations. Whereas a synchronous motor's rotor turns at the same rate as the stator field, an induction motor's rotor rotates at a somewhat slower speed than the stator field. The induction motor stator's magnetic field is therefore changing or rotating relative to the rotor. This induces an opposing current in the rotor, in effect the motor's secondary winding. [28] The rotating magnetic flux induces currents in the rotor windings, [29] in a manner similar to currents induced in a transformer's secondary winding(s). In many industrial variable-speed applications, DC and WRIM drives are being displaced by VFD-fed cage induction motors. The most common efficient way to control asynchronous motor speed of many loads is with VFDs. Barriers to adoption of VFDs due to cost and reliability considerations have been reduced considerably over the past three decades such that it is estimated that drive technology is adopted in as many as 30–40% of all newly installed motors. [42] The first commutator-free single-phase AC induction motor was invented by Hungarian engineer Ottó Bláthy; he used the single-phase motor to propel his invention, the electricity meter. [9] [10] An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor that produces torque is obtained by electromagnetic induction from the magnetic field of the stator winding. [1] An induction motor therefore needs no electrical connections to the rotor. [a] An induction motor's rotor can be either wound type or squirrel-cage type. Polyphase motors have rotor bars shaped to give different speed-torque characteristics. The current distribution within the rotor bars varies depending on the frequency of the induced current. At standstill, the rotor current is the same frequency as the stator current, and tends to travel at the outermost parts of the cage rotor bars (by skin effect). The different bar shapes can give usefully different speed-torque characteristics as well as some control over the inrush current at startup.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment