276°
Posted 20 hours ago

Over the Sink Colander Strainer Basket, Expandable Collapsable Collinders Vegetable/Fruit Washing Basket,Double Layered Collaspable Collider Portable Fruit Washer Pasta Strainer (White)

£9.71£19.42Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

The LHC forward (LHCf) detector, located close to the ATLAS interaction point, uses particles thrown forward in collisions as a means of simulating cosmic rays under laboratory conditions. Further, along the beam trajectory is the Forward Search Experiment (FASER), designed to look for light, weakly interacting particles that are likely to elude the larger detectors. Cosmic rays hit the Earth, the sun, other stars and all the myriad denizens of the universe with energies that far exceed those of the LHC. This happens all the time. If there were any danger, we would see some of these objects disappearing before our eyes. And yet we don't. Thus, we can conclude that whatever happens in the LHC, it poses exactly, precisely, inarguably, zero danger. And you can't forget the crucial point that this argument works for all conceivable dangers, including those that nobody has imagined yet.

Skeptics have proposed that the LHC would produce many possible dangers, ranging from the vague fear of the unknown to some that are strangely specific. All of those phenomena, as well as many others, cause subatomic particles to be flung across space. Mostly consisting of protons, those particles travel the lengths of the universe, stopping only when an inconvenient bit of matter gets in their way. What immediately follows are the weaker (but still compelling) reasons why this possibility is, well, not possible, and in the next section you will see the cast-iron and gold-plated reasons to dismiss this and all other possible Earth-ending scenarios. Over 12 years after it entered service, the LHC is still the world's biggest and most powerful particle accelerator. But it won't hold that record forever. Several countries have plans to go a step further, including China's Circular Electron Positron Collider and the International Linear Collider in Japan.

All hadrons are made up of quarks, but LHCb is designed to detect particles that include a particularly rare type of quark known as 'beauty'. Studying CP violation in beauty-containing particles is one of the most promising ways to shed light on the emergence of matter-antimatter asymmetry in the early universe. Hunting exotic particles

But there is no evidence that strangelets are real, so that might be enough to keep some people from worrying. However, it's still true that the LHC is a machine of discovery and maybe it could actually make a strangelet … well, if they really exist. After all, strangelets haven't been definitively ruled out and some theories favor them. However, an earlier particle accelerator called the Relativistic Heavy Ion Collider went looking for them and came up empty.I started on ATLAS for my PhD research. I was developing new pixel sensors to improve the measurement of particles as they pass through our detector. It's really important to make them resistant to radiation damage, which is a big concern when you put the sensors close to the particle collisions. Since then, I've had the opportunity to work on a number of different projects, such as understanding how the Higgs boson and the top quark interact with each other. Now I'm applying machine learning algorithms to our data to look for hints of dark matter. One of the biggest mysteries in physics right now is, what is 85% of the matter in our universe? We call it dark matter, but we don't actually know much about it! Two of the four collision points around the circumference of the LHC are occupied by large general-purpose detectors. These include the Compact Muon Solenoid (CMS), which can be thought of as a giant 3D camera, snapping images of particles up to 40 million times per second. Cosmic ray collisions involve fast-moving protons hitting stationary ones, while LHC collisions involve two beams of fast-moving protons hitting head-on. Head-on collisions are intrinsically more violent; so to make a fair comparison, we need to consider cosmic rays that are much higher in energy, specifically about 100,000 times higher than LHC energies. With the new upgrades, CERN has increased the power of the LHC's injectors, which feed beams of accelerated particles into the collider. At the time of the previous shutdown in 2018, the collider could accelerate beams up to an energy of 6.5 teraelectronvolts, and that value has been raised to 6.8 teraelectronvolts, according to a statement from CERN.

This is a beautiful time, you know, because the best time to be an experimentalist is when the theorists have run out of ideas. Because then anything we discover is new,” said David Newbold, who directs the particle physics program at Rutherford Appleton Laboratory in the U.K. and is currently leading an effort to upgrade one of the main detectors at the LHC. Another proposed danger is a thing called a strangelet. A strangelet is a hypothetical subatomic particle composed of roughly an equal number of up, down and strange quarks.Right now, nobody can say for sure how much more power we will need to find the next new particles -- if there are any. It is entirely possible that the next collider may not see them at all. The ugly If you see a news headline about exotic new subatomic particles, the chances are the discovery was made at CERN, the European Organization for Nuclear Research, located near Geneva in Switzerland.

Remember that cosmic rays are mostly protons. That's because almost all of the matter in the universe is hydrogen, which consists of a single proton and a single electron. When they hit the Earth's atmosphere, they collide with nitrogen or oxygen or other atoms, which are composed of protons and neutrons. Accordingly, cosmic rays hitting the Earth are just two protons slamming together — this is exactly what is happening inside the LHC. Two protons slamming together. Antimatter often pops into existence inside CERN’s high-energy accelerators, as one-half of a particle-antiparticle pair. But in the usual course of events, the antiparticles don’t last long before they’re annihilated in collisions with ordinary particles.Away from ATLAS and CMS, the LHC has two other interaction points. One is occupied by A Large Ion Collider Experiment (ALICE), a specialized detector for heavy-ion physics. The final interaction point is home to two experiments on the very cutting edge of physics: LHCb, devoted to the physics of the exotic 'beauty quark', and MoEDAL — the Monopole and Exotics Detector at the LHC. LHC and the Higgs boson However, the price of exploring the unknown often doesn’t come cheap. With at least a 10-figure price tag, scientists and engineers are debating whether the endeavor will be worth the investment. The good Sharing the same underground cavern as LHCb is a smaller instrument called MoEDAL, which stands for "Monopole and Exotics Detector at the LHC". While most CERN experiments are designed to study known particles, this one is aimed at discovering hitherto unknown ones that lie outside the present Standard Model. A monopole, for example, would be a magnetized particle consisting only of a north pole without a south one, or vice versa. Such particles have long been hypothesized, but never observed. The LHC's biggest moment came in 2012 with the discovery of the Higgs boson. Although widely referred to as the "God particle", it's not really as awesome in itself as that name might suggest. Its huge significance came from the fact that it was the last prediction of the Standard Model that hadn't yet been proven. But the Higgs boson is far from being the LHC's only discovery. When Run 3 commences we can expect a whole new spate of discoveries, so it's a good time to take a closer look at what makes the LHC — and the rest of CERN — so unique. What is the Large Hadron Collider?

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment